Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Resource-Enhanced Neural Model for Event Argument Extraction (2010.03022v1)

Published 6 Oct 2020 in cs.CL

Abstract: Event argument extraction (EAE) aims to identify the arguments of an event and classify the roles that those arguments play. Despite great efforts made in prior work, there remain many challenges: (1) Data scarcity. (2) Capturing the long-range dependency, specifically, the connection between an event trigger and a distant event argument. (3) Integrating event trigger information into candidate argument representation. For (1), we explore using unlabeled data in different ways. For (2), we propose to use a syntax-attending Transformer that can utilize dependency parses to guide the attention mechanism. For (3), we propose a trigger-aware sequence encoder with several types of trigger-dependent sequence representations. We also support argument extraction either from text annotated with gold entities or from plain text. Experiments on the English ACE2005 benchmark show that our approach achieves a new state-of-the-art.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.