Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards a Scalable and Distributed Infrastructure for Deep Learning Applications (2010.03012v2)

Published 6 Oct 2020 in cs.DC and cs.LG

Abstract: Although recent scaling up approaches to training deep neural networks have proven to be effective, the computational intensity of large and complex models, as well as the availability of large-scale datasets, require deep learning frameworks to utilize scaling out techniques. Parallelization approaches and distribution requirements are not considered in the preliminary designs of most available distributed deep learning frameworks, and most of them still are not able to perform effective and efficient fine-grained inter-node communication. We present Phylanx that has the potential to alleviate these shortcomings. Phylanx offers a productivity-oriented frontend where user Python code is translated to a futurized execution tree that can be executed efficiently on multiple nodes using the C++ standard library for parallelism and concurrency (HPX), leveraging fine-grained threading and an active messaging task-based runtime system.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.