Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On The Convergence of Euler Discretization of Finite-Time Convergent Gradient Flows (2010.02990v5)

Published 6 Oct 2020 in cs.LG, cs.SY, and eess.SY

Abstract: In this study, we investigate the performance of two novel first-order optimization algorithms, namely the rescaled-gradient flow (RGF) and the signed-gradient flow (SGF). These algorithms are derived from the forward Euler discretization of finite-time convergent flows, comprised of non-Lipschitz dynamical systems, which locally converge to the minima of gradient-dominated functions. We first characterize the closeness between the continuous flows and the discretizations, then we proceed to present (linear) convergence guarantees of the discrete algorithms (in the general and the stochastic case). Furthermore, in cases where problem parameters remain unknown or exhibit non-uniformity, we further integrate the line-search strategy with RGF/SGF and provide convergence analysis in this setting. We then apply the proposed algorithms to academic examples and deep neural network training, our results show that our schemes demonstrate faster convergences against standard optimization alternatives.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.