Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Legal Sentiment Analysis and Opinion Mining (LSAOM): Assimilating Advances in Autonomous AI Legal Reasoning (2010.02726v1)

Published 2 Oct 2020 in cs.CY and cs.AI

Abstract: An expanding field of substantive interest for the theory of the law and the practice-of-law entails Legal Sentiment Analysis and Opinion Mining (LSAOM), consisting of two often intertwined phenomena and actions underlying legal discussions and narratives: (1) Sentiment Analysis (SA) for the detection of expressed or implied sentiment about a legal matter within the context of a legal milieu, and (2) Opinion Mining (OM) for the identification and illumination of explicit or implicit opinion accompaniments immersed within legal discourse. Efforts to undertake LSAOM have historically been performed by human hand and cognition, and only thinly aided in more recent times by the use of computer-based approaches. Advances in AI involving especially NLP and Machine Learning (ML) are increasingly bolstering how automation can systematically perform either or both of Sentiment Analysis and Opinion Mining, all of which is being inexorably carried over into engagement within a legal context for improving LSAOM capabilities. This research paper examines the evolving infusion of AI into Legal Sentiment Analysis and Opinion Mining and proposes an alignment with the Levels of Autonomy (LoA) of AI Legal Reasoning (AILR), plus provides additional insights regarding AI LSAOM in its mechanizations and potential impact to the study of law and the practicing of law.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.