Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multirotors from Takeoff to Real-Time Full Identification Using the Modified Relay Feedback Test and Deep Neural Networks (2010.02645v2)

Published 6 Oct 2020 in eess.SY and cs.SY

Abstract: Low cost real-time identification of multirotor unmanned aerial vehicle (UAV) dynamics is an active area of research supported by the surge in demand and emerging application domains. Such real-time identification capabilities shorten development time and cost, making UAVs' technology more accessible, and enable a wide variety of advanced applications. In this paper, we present a novel comprehensive approach, called DNN-MRFT, for real-time identification and tuning of multirotor UAVs using the Modified Relay Feedback Test (MRFT) and Deep Neural Networks (DNN). The main contribution is the development of a generalized framework for the application of DNN-MRFT to higher-order systems. One of the notable advantages of DNN-MRFT is the exact estimation of identified process gain, which mitigates the inaccuracies introduced due to the use of the describing function method in approximating the response of Lure's systems. A secondary contribution is a generalized controller based on DNN-MRFT that takes-off a UAV with unknown dynamics and identifies the inner loops dynamics in-flight. Using the developed framework, DNN-MRFT is sequentially applied to the outer translational loops of the UAV utilizing in-flight results obtained for the inner attitude loops. DNN-MRFT takes on average 15 seconds to get the full knowledge of multirotor UAV dynamics and without any further tuning or calibration the UAV would be able to pass through a vertical window, and accurately follow trajectories achieving state-of-the-art performance. Such demonstrated accuracy, speed, and robustness of identification pushes the limits of state-of-the-art in real-time identification of UAVs.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube