Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Nonparametric Density Estimation with Tensor Decompositions (2010.02425v1)

Published 6 Oct 2020 in math.ST, cs.LG, stat.ME, stat.ML, and stat.TH

Abstract: While nonparametric density estimators often perform well on low dimensional data, their performance can suffer when applied to higher dimensional data, owing presumably to the curse of dimensionality. One technique for avoiding this is to assume no dependence between features and that the data are sampled from a separable density. This allows one to estimate each marginal distribution independently thereby avoiding the slow rates associated with estimating the full joint density. This is a strategy employed in naive Bayes models and is analogous to estimating a rank-one tensor. In this paper we investigate whether these improvements can be extended to other simplified dependence assumptions which we model via nonnegative tensor decompositions. In our central theoretical results we prove that restricting estimation to low-rank nonnegative PARAFAC or Tucker decompositions removes the dimensionality exponent on bin width rates for multidimensional histograms. These results are validated experimentally with high statistical significance via direct application of existing nonnegative tensor factorization to histogram estimators.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.