Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

ASDN: A Deep Convolutional Network for Arbitrary Scale Image Super-Resolution (2010.02414v1)

Published 6 Oct 2020 in eess.IV and cs.CV

Abstract: Deep convolutional neural networks have significantly improved the peak signal-to-noise ratio of SuperResolution (SR). However, image viewer applications commonly allow users to zoom the images to arbitrary magnification scales, thus far imposing a large number of required training scales at a tremendous computational cost. To obtain a more computationally efficient model for arbitrary scale SR, this paper employs a Laplacian pyramid method to reconstruct any-scale high-resolution (HR) images using the high-frequency image details in a Laplacian Frequency Representation. For SR of small-scales (between 1 and 2), images are constructed by interpolation from a sparse set of precalculated Laplacian pyramid levels. SR of larger scales is computed by recursion from small scales, which significantly reduces the computational cost. For a full comparison, fixed- and any-scale experiments are conducted using various benchmarks. At fixed scales, ASDN outperforms predefined upsampling methods (e.g., SRCNN, VDSR, DRRN) by about 1 dB in PSNR. At any-scale, ASDN generally exceeds Meta-SR on many scales.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.