Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automotive Radar Data Acquisition using Object Detection (2010.02367v2)

Published 5 Oct 2020 in cs.CV and cs.LG

Abstract: The growing urban complexity demands an efficient algorithm to acquire and process various sensor information from autonomous vehicles. In this paper, we introduce an algorithm to utilize object detection results from the image to adaptively sample and acquire radar data using Compressed Sensing (CS). This novel algorithm is motivated by the hypothesis that with a limited sampling budget, allocating more sampling budget to areas with the object as opposed to a uniform sampling ultimately improves relevant object detection performance. We improve detection performance by dynamically allocating a lower sampling rate to objects such as buses than pedestrians leading to better reconstruction than baseline across areas with objects of interest. We automate the sampling rate allocation using linear programming and show significant time savings while reducing the radar block size by a factor of 2. We also analyze a Binary Permuted Diagonal measurement matrix for radar acquisition which is hardware-efficient and show its performance is similar to Gaussian and Binary Permuted Block Diagonal matrix. Our experiments on the Oxford radar dataset show an effective reconstruction of objects of interest with 10% sampling rate. Finally, we develop a transformer-based 2D object detection network using the NuScenes radar and image data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.