Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Specialized federated learning using a mixture of experts (2010.02056v3)

Published 5 Oct 2020 in cs.LG

Abstract: In federated learning, clients share a global model that has been trained on decentralized local client data. Although federated learning shows significant promise as a key approach when data cannot be shared or centralized, current methods show limited privacy properties and have shortcomings when applied to common real-world scenarios, especially when client data is heterogeneous. In this paper, we propose an alternative method to learn a personalized model for each client in a federated setting, with greater generalization abilities than previous methods. To achieve this personalization we propose a federated learning framework using a mixture of experts to combine the specialist nature of a locally trained model with the generalist knowledge of a global model. We evaluate our method on a variety of datasets with different levels of data heterogeneity, and our results show that the mixture of experts model is better suited as a personalized model for devices in these settings, outperforming both fine-tuned global models and local specialists.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.