Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Simple Framework for Uncertainty in Contrastive Learning (2010.02038v1)

Published 5 Oct 2020 in cs.LG and stat.ML

Abstract: Contrastive approaches to representation learning have recently shown great promise. In contrast to generative approaches, these contrastive models learn a deterministic encoder with no notion of uncertainty or confidence. In this paper, we introduce a simple approach based on "contrasting distributions" that learns to assign uncertainty for pretrained contrastive representations. In particular, we train a deep network from a representation to a distribution in representation space, whose variance can be used as a measure of confidence. In our experiments, we show that this deep uncertainty model can be used (1) to visually interpret model behavior, (2) to detect new noise in the input to deployed models, (3) to detect anomalies, where we outperform 10 baseline methods across 11 tasks with improvements of up to 14% absolute, and (4) to classify out-of-distribution examples where our fully unsupervised model is competitive with supervised methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.