"LazImpa": Lazy and Impatient neural agents learn to communicate efficiently (2010.01878v1)
Abstract: Previous work has shown that artificial neural agents naturally develop surprisingly non-efficient codes. This is illustrated by the fact that in a referential game involving a speaker and a listener neural networks optimizing accurate transmission over a discrete channel, the emergent messages fail to achieve an optimal length. Furthermore, frequent messages tend to be longer than infrequent ones, a pattern contrary to the Zipf Law of Abbreviation (ZLA) observed in all natural languages. Here, we show that near-optimal and ZLA-compatible messages can emerge, but only if both the speaker and the listener are modified. We hence introduce a new communication system, "LazImpa", where the speaker is made increasingly lazy, i.e. avoids long messages, and the listener impatient, i.e.,~seeks to guess the intended content as soon as possible.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.