Papers
Topics
Authors
Recent
2000 character limit reached

New Insights on Learning Rules for Hopfield Networks: Memory and Objective Function Minimisation (2010.01472v1)

Published 4 Oct 2020 in cs.NE and q-bio.NC

Abstract: Hopfield neural networks are a possible basis for modelling associative memory in living organisms. After summarising previous studies in the field, we take a new look at learning rules, exhibiting them as descent-type algorithms for various cost functions. We also propose several new cost functions suitable for learning. We discuss the role of biases (the external inputs) in the learning process in Hopfield networks. Furthermore, we apply Newtons method for learning memories, and experimentally compare the performances of various learning rules. Finally, to add to the debate whether allowing connections of a neuron to itself enhances memory capacity, we numerically investigate the effects of self coupling. Keywords: Hopfield Networks, associative memory, content addressable memory, learning rules, gradient descent, attractor networks

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.