Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Uncertainty-Aware Multi-Modal Ensembling for Severity Prediction of Alzheimer's Dementia (2010.01440v2)

Published 3 Oct 2020 in cs.LG, cs.SD, eess.AS, and q-bio.QM

Abstract: Reliability in Neural Networks (NNs) is crucial in safety-critical applications like healthcare, and uncertainty estimation is a widely researched method to highlight the confidence of NNs in deployment. In this work, we propose an uncertainty-aware boosting technique for multi-modal ensembling to predict Alzheimer's Dementia Severity. The propagation of uncertainty across acoustic, cognitive, and linguistic features produces an ensemble system robust to heteroscedasticity in the data. Weighing the different modalities based on the uncertainty estimates, we experiment on the benchmark ADReSS dataset, a subject-independent and balanced dataset, to show that our method outperforms the state-of-the-art methods while also reducing the overall entropy of the system. This work aims to encourage fair and aware models. The source code is available at https://github.com/wazeerzulfikar/alzheimers-dementia

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com