Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cubic Spline Smoothing Compensation for Irregularly Sampled Sequences (2010.01381v1)

Published 3 Oct 2020 in cs.LG and stat.ML

Abstract: The marriage of recurrent neural networks and neural ordinary differential networks (ODE-RNN) is effective in modeling irregularly-observed sequences. While ODE produces the smooth hidden states between observation intervals, the RNN will trigger a hidden state jump when a new observation arrives, thus cause the interpolation discontinuity problem. To address this issue, we propose the cubic spline smoothing compensation, which is a stand-alone module upon either the output or the hidden state of ODE-RNN and can be trained end-to-end. We derive its analytical solution and provide its theoretical interpolation error bound. Extensive experiments indicate its merits over both ODE-RNN and cubic spline interpolation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.