Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Effective Sample Size, Dimensionality, and Generalization in Covariate Shift Adaptation (2010.01184v5)

Published 2 Oct 2020 in stat.ML, cs.AI, cs.LG, and stat.ME

Abstract: In supervised learning, training and test datasets are often sampled from distinct distributions. Domain adaptation techniques are thus required. Covariate shift adaptation yields good generalization performance when domains differ only by the marginal distribution of features. Covariate shift adaptation is usually implemented using importance weighting, which may fail, according to common wisdom, due to small effective sample sizes (ESS). Previous research argues this scenario is more common in high-dimensional settings. However, how effective sample size, dimensionality, and model performance/generalization are formally related in supervised learning, considering the context of covariate shift adaptation, is still somewhat obscure in the literature. Thus, a main challenge is presenting a unified theory connecting those points. Hence, in this paper, we focus on building a unified view connecting the ESS, data dimensionality, and generalization in the context of covariate shift adaptation. Moreover, we also demonstrate how dimensionality reduction or feature selection can increase the ESS, and argue that our results support dimensionality reduction before covariate shift adaptation as a good practice.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.