Semantics-Guided Clustering with Deep Progressive Learning for Semi-Supervised Person Re-identification (2010.01148v1)
Abstract: Person re-identification (re-ID) requires one to match images of the same person across camera views. As a more challenging task, semi-supervised re-ID tackles the problem that only a number of identities in training data are fully labeled, while the remaining are unlabeled. Assuming that such labeled and unlabeled training data share disjoint identity labels, we propose a novel framework of Semantics-Guided Clustering with Deep Progressive Learning (SGC-DPL) to jointly exploit the above data. By advancing the proposed Semantics-Guided Affinity Propagation (SG-AP), we are able to assign pseudo-labels to selected unlabeled data in a progressive fashion, under the semantics guidance from the labeled ones. As a result, our approach is able to augment the labeled training data in the semi-supervised setting. Our experiments on two large-scale person re-ID benchmarks demonstrate the superiority of our SGC-DPL over state-of-the-art methods across different degrees of supervision. In extension, the generalization ability of our SGC-DPL is also verified in other tasks like vehicle re-ID or image retrieval with the semi-supervised setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.