Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Building Large Lexicalized Ontologies from Text: a Use Case in Automatic Indexing of Biotechnology Patents (2010.00860v1)

Published 2 Oct 2020 in cs.AI, cs.CL, and cs.IR

Abstract: This paper presents a tool, TyDI, and methods experimented in the building of a termino-ontology, i.e. a lexicalized ontology aimed at fine-grained indexation for semantic search applications. TyDI provides facilities for knowledge engineers and domain experts to efficiently collaborate to validate, organize and conceptualize corpus extracted terms. A use case on biotechnology patent search demonstrates TyDI's potential.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.