Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Multi-level Monte Carlo Finite Difference Methods for Fractional Conservation Laws with Random Data (2010.00537v1)

Published 1 Oct 2020 in math.NA and cs.NA

Abstract: We establish a notion of random entropy solution for degenerate fractional conservation laws incorporating randomness in the initial data, convective flux and diffusive flux. In order to quantify the solution uncertainty, we design a multi-level Monte Carlo Finite Difference Method (MLMC-FDM) to approximate the ensemble average of the random entropy solutions. Furthermore, we analyze the convergence rates for MLMC-FDM and compare it with the convergence rates for the deterministic case. Additionally, we formulate error vs. work estimates for the multi-level estimator. Finally, we present several numerical experiments to demonstrate the efficiency of these schemes and validate the theoretical estimates obtained in this work.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.