Papers
Topics
Authors
Recent
2000 character limit reached

Multi-level Monte Carlo Finite Difference Methods for Fractional Conservation Laws with Random Data (2010.00537v1)

Published 1 Oct 2020 in math.NA and cs.NA

Abstract: We establish a notion of random entropy solution for degenerate fractional conservation laws incorporating randomness in the initial data, convective flux and diffusive flux. In order to quantify the solution uncertainty, we design a multi-level Monte Carlo Finite Difference Method (MLMC-FDM) to approximate the ensemble average of the random entropy solutions. Furthermore, we analyze the convergence rates for MLMC-FDM and compare it with the convergence rates for the deterministic case. Additionally, we formulate error vs. work estimates for the multi-level estimator. Finally, we present several numerical experiments to demonstrate the efficiency of these schemes and validate the theoretical estimates obtained in this work.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.