Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analysis of KNN Density Estimation (2010.00438v1)

Published 30 Sep 2020 in stat.ML and cs.LG

Abstract: We analyze the $\ell_1$ and $\ell_\infty$ convergence rates of k nearest neighbor density estimation method. Our analysis includes two different cases depending on whether the support set is bounded or not. In the first case, the probability density function has a bounded support and is bounded away from zero. We show that kNN density estimation is minimax optimal under both $\ell_1$ and $\ell_\infty$ criteria, if the support set is known. If the support set is unknown, then the convergence rate of $\ell_1$ error is not affected, while $\ell_\infty$ error does not converge. In the second case, the probability density function can approach zero and is smooth everywhere. Moreover, the Hessian is assumed to decay with the density values. For this case, our result shows that the $\ell_\infty$ error of kNN density estimation is nearly minimax optimal. The $\ell_1$ error does not reach the minimax lower bound, but is better than kernel density estimation.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.