Papers
Topics
Authors
Recent
2000 character limit reached

Momentum via Primal Averaging: Theoretical Insights and Learning Rate Schedules for Non-Convex Optimization (2010.00406v4)

Published 1 Oct 2020 in cs.LG, math.OC, and stat.ML

Abstract: Momentum methods are now used pervasively within the machine learning community for training non-convex models such as deep neural networks. Empirically, they out perform traditional stochastic gradient descent (SGD) approaches. In this work we develop a Lyapunov analysis of SGD with momentum (SGD+M), by utilizing a equivalent rewriting of the method known as the stochastic primal averaging (SPA) form. This analysis is much tighter than previous theory in the non-convex case, and due to this we are able to give precise insights into when SGD+M may out-perform SGD, and what hyper-parameter schedules will work and why.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.