Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Space-Time Variational Method for Optimal Control Problems: Well-posedness, stability and numerical solution (2010.00345v3)

Published 1 Oct 2020 in math.NA and cs.NA

Abstract: We consider an optimal control problem constrained by a parabolic partial differential equation (PDE) with Robin boundary conditions. We use a well-posed space-time variational formulation in Lebesgue--Bochner spaces with minimal regularity. The abstract formulation of the optimal control problem yields the Lagrange function and Karush--Kuhn--Tucker (KKT) conditions in a natural manner. This results in space-time variational formulations of the adjoint and gradient equation in Lebesgue--Bochner spaces with minimal regularity. Necessary and sufficient optimality conditions are formulated and the optimality system is shown to be well-posed. Next, we introduce a conforming uniformly stable simultaneous space-time (tensorproduct) discretization of the optimality system in these Lebesgue--Boch-ner spaces. Using finite elements of appropriate orders in space and time for trial and test spaces, this setting is known to be equivalent to a Crank--Nicolson time-stepping scheme for parabolic problems. Differences to existing methods are detailed. We show numerical comparisons with time-stepping methods. The space-time method shows good stability properties and requires fewer degrees of freedom in time to reach the same accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube