Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Space-Time Variational Method for Optimal Control Problems: Well-posedness, stability and numerical solution (2010.00345v3)

Published 1 Oct 2020 in math.NA and cs.NA

Abstract: We consider an optimal control problem constrained by a parabolic partial differential equation (PDE) with Robin boundary conditions. We use a well-posed space-time variational formulation in Lebesgue--Bochner spaces with minimal regularity. The abstract formulation of the optimal control problem yields the Lagrange function and Karush--Kuhn--Tucker (KKT) conditions in a natural manner. This results in space-time variational formulations of the adjoint and gradient equation in Lebesgue--Bochner spaces with minimal regularity. Necessary and sufficient optimality conditions are formulated and the optimality system is shown to be well-posed. Next, we introduce a conforming uniformly stable simultaneous space-time (tensorproduct) discretization of the optimality system in these Lebesgue--Boch-ner spaces. Using finite elements of appropriate orders in space and time for trial and test spaces, this setting is known to be equivalent to a Crank--Nicolson time-stepping scheme for parabolic problems. Differences to existing methods are detailed. We show numerical comparisons with time-stepping methods. The space-time method shows good stability properties and requires fewer degrees of freedom in time to reach the same accuracy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.