Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Heteroscedastic Bayesian Optimisation for Stochastic Model Predictive Control (2010.00202v2)

Published 1 Oct 2020 in cs.LG, cs.RO, and stat.ML

Abstract: Model predictive control (MPC) has been successful in applications involving the control of complex physical systems. This class of controllers leverages the information provided by an approximate model of the system's dynamics to simulate the effect of control actions. MPC methods also present a few hyper-parameters which may require a relatively expensive tuning process by demanding interactions with the physical system. Therefore, we investigate fine-tuning MPC methods in the context of stochastic MPC, which presents extra challenges due to the randomness of the controller's actions. In these scenarios, performance outcomes present noise, which is not homogeneous across the domain of possible hyper-parameter settings, but which varies in an input-dependent way. To address these issues, we propose a Bayesian optimisation framework that accounts for heteroscedastic noise to tune hyper-parameters in control problems. Empirical results on benchmark continuous control tasks and a physical robot support the proposed framework's suitability relative to baselines, which do not take heteroscedasticity into account.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.