Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

A Supervised Machine Learning Approach for Accelerating the Design of Particulate Composites: Application to Thermal Conductivity (2010.00041v3)

Published 30 Sep 2020 in physics.comp-ph and cs.NE

Abstract: A supervised ML based computational methodology for the design of particulate multifunctional composite materials with desired thermal conductivity (TC) is presented. The design variables are physical descriptors of the material microstructure that directly link microstructure to the material's properties. A sufficiently large and uniformly sampled database was generated based on the Sobol sequence. Microstructures were realized using an efficient dense packing algorithm, and the TCs were obtained using our previously developed Fast Fourier Transform (FFT) homogenization method. Our optimized ML method is trained over the generated database and establishes the complex relationship between the structure and properties. Finally, the application of the trained ML model in the inverse design of a new class of composite materials, liquid metal (LM) elastomer, with desired TC is discussed. The results show that the surrogate model is accurate in predicting the microstructure behavior with respect to high-fidelity FFT simulations, and inverse design is robust in finding microstructure parameters according to case studies.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.