Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Consistent regression when oblivious outliers overwhelm (2009.14774v2)

Published 30 Sep 2020 in cs.LG and stat.ML

Abstract: We consider a robust linear regression model $y=X\beta* + \eta$, where an adversary oblivious to the design $X\in \mathbb{R}{n\times d}$ may choose $\eta$ to corrupt all but an $\alpha$ fraction of the observations $y$ in an arbitrary way. Prior to our work, even for Gaussian $X$, no estimator for $\beta*$ was known to be consistent in this model except for quadratic sample size $n \gtrsim (d/\alpha)2$ or for logarithmic inlier fraction $\alpha\ge 1/\log n$. We show that consistent estimation is possible with nearly linear sample size and inverse-polynomial inlier fraction. Concretely, we show that the Huber loss estimator is consistent for every sample size $n= \omega(d/\alpha2)$ and achieves an error rate of $O(d/\alpha2n){1/2}$. Both bounds are optimal (up to constant factors). Our results extend to designs far beyond the Gaussian case and only require the column span of $X$ to not contain approximately sparse vectors). (similar to the kind of assumption commonly made about the kernel space for compressed sensing). We provide two technically similar proofs. One proof is phrased in terms of strong convexity, extending work of [Tsakonas et al.'14], and particularly short. The other proof highlights a connection between the Huber loss estimator and high-dimensional median computations. In the special case of Gaussian designs, this connection leads us to a strikingly simple algorithm based on computing coordinate-wise medians that achieves optimal guarantees in nearly-linear time, and that can exploit sparsity of $\beta*$. The model studied here also captures heavy-tailed noise distributions that may not even have a first moment.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.