Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Byzantine Fault-Tolerance in Decentralized Optimization under Minimal Redundancy (2009.14763v1)

Published 30 Sep 2020 in cs.DC, cs.MA, cs.SY, and eess.SY

Abstract: This paper considers the problem of Byzantine fault-tolerance in multi-agent decentralized optimization. In this problem, each agent has a local cost function. The goal of a decentralized optimization algorithm is to allow the agents to cooperatively compute a common minimum point of their aggregate cost function. We consider the case when a certain number of agents may be Byzantine faulty. Such faulty agents may not follow a prescribed algorithm, and they may share arbitrary or incorrect information with other non-faulty agents. Presence of such Byzantine agents renders a typical decentralized optimization algorithm ineffective. We propose a decentralized optimization algorithm with provable exact fault-tolerance against a bounded number of Byzantine agents, provided the non-faulty agents have a minimal redundancy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.