Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Many-to-Many Protein Sequence Alignment using Sparse Matrices (2009.14467v1)

Published 30 Sep 2020 in cs.DC and q-bio.GN

Abstract: Identifying similar protein sequences is a core step in many computational biology pipelines such as detection of homologous protein sequences, generation of similarity protein graphs for downstream analysis, functional annotation and gene location. Performance and scalability of protein similarity searches have proven to be a bottleneck in many bioinformatics pipelines due to increases in cheap and abundant sequencing data. This work presents a new distributed-memory software, PASTIS. PASTIS relies on sparse matrix computations for efficient identification of possibly similar proteins. We use distributed sparse matrices for scalability and show that the sparse matrix infrastructure is a great fit for protein similarity searches when coupled with a fully-distributed dictionary of sequences that allows remote sequence requests to be fulfilled. Our algorithm incorporates the unique bias in amino acid sequence substitution in searches without altering the basic sparse matrix model, and in turn, achieves ideal scaling up to millions of protein sequences.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.