Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acceleration of Large Margin Metric Learning for Nearest Neighbor Classification Using Triplet Mining and Stratified Sampling (2009.14244v1)

Published 29 Sep 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Metric learning is one of the techniques in manifold learning with the goal of finding a projection subspace for increasing and decreasing the inter- and intra-class variances, respectively. Some of the metric learning methods are based on triplet learning with anchor-positive-negative triplets. Large margin metric learning for nearest neighbor classification is one of the fundamental methods to do this. Recently, Siamese networks have been introduced with the triplet loss. Many triplet mining methods have been developed for Siamese networks; however, these techniques have not been applied on the triplets of large margin metric learning for nearest neighbor classification. In this work, inspired by the mining methods for Siamese networks, we propose several triplet mining techniques for large margin metric learning. Moreover, a hierarchical approach is proposed, for acceleration and scalability of optimization, where triplets are selected by stratified sampling in hierarchical hyper-spheres. We analyze the proposed methods on three publicly available datasets, i.e., Fisher Iris, ORL faces, and MNIST datasets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.