Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Lip-reading with Densely Connected Temporal Convolutional Networks (2009.14233v3)

Published 29 Sep 2020 in cs.CV

Abstract: In this work, we present the Densely Connected Temporal Convolutional Network (DC-TCN) for lip-reading of isolated words. Although Temporal Convolutional Networks (TCN) have recently demonstrated great potential in many vision tasks, its receptive fields are not dense enough to model the complex temporal dynamics in lip-reading scenarios. To address this problem, we introduce dense connections into the network to capture more robust temporal features. Moreover, our approach utilises the Squeeze-and-Excitation block, a light-weight attention mechanism, to further enhance the model's classification power. Without bells and whistles, our DC-TCN method has achieved 88.36% accuracy on the Lip Reading in the Wild (LRW) dataset and 43.65% on the LRW-1000 dataset, which has surpassed all the baseline methods and is the new state-of-the-art on both datasets.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.