Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Think before you act: A simple baseline for compositional generalization (2009.13962v2)

Published 29 Sep 2020 in cs.LG and stat.ML

Abstract: Contrarily to humans who have the ability to recombine familiar expressions to create novel ones, modern neural networks struggle to do so. This has been emphasized recently with the introduction of the benchmark dataset "gSCAN" (Ruis et al. 2020), aiming to evaluate models' performance at compositional generalization in grounded language understanding. In this work, we challenge the gSCAN benchmark by proposing a simple model that achieves surprisingly good performance on two of the gSCAN test splits. Our model is based on the observation that, to succeed on gSCAN tasks, the agent must (i) identify the target object (think) before (ii) navigating to it successfully (act). Concretely, we propose an attention-inspired modification of the baseline model from (Ruis et al. 2020), together with an auxiliary loss, that takes into account the sequential nature of steps (i) and (ii). While two compositional tasks are trivially solved with our approach, we also find that the other tasks remain unsolved, validating the relevance of gSCAN as a benchmark for evaluating models' compositional abilities.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.