Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Database Repairing with Soft Functional Dependencies (2009.13821v1)

Published 29 Sep 2020 in cs.DB

Abstract: A common interpretation of soft constraints penalizes the database for every violation of every constraint, where the penalty is the cost (weight) of the constraint. A computational challenge is that of finding an optimal subset: a collection of database tuples that minimizes the total penalty when each tuple has a cost of being excluded. When the constraints are strict (i.e., have an infinite cost), this subset is a "cardinality repair" of an inconsistent database; in soft interpretations, this subset corresponds to a "most probable world" of a probabilistic database, a "most likely intention" of a probabilistic unclean database, and so on. Within the class of functional dependencies, the complexity of finding a cardinality repair is thoroughly understood. Yet, very little is known about the complexity of this problem in the more general soft semantics. This paper makes a significant progress in this direction. In addition to general insights about the hardness and approximability of the problem, we present algorithms for two special cases: a single functional dependency, and a bipartite matching. The latter is the problem of finding an optimal "almost matching" of a bipartite graph where a penalty is paid for every lost edge and every violation of monogamy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.