Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hybrid Heavy-Ball Systems: Reset Methods for Optimization with Uncertainty (2009.13770v2)

Published 29 Sep 2020 in eess.SY and cs.SY

Abstract: Momentum methods for convex optimization often rely on precise choices of algorithmic parameters, based on knowledge of problem parameters, in order to achieve fast convergence, as well as to prevent oscillations that could severely restrict applications of these algorithms to cyber-physical systems. To address these issues, we propose two dynamical systems, named the Hybrid Heavy-Ball System and Hybrid-inspired Heavy-Ball System, which employ a feedback mechanism for driving the momentum state toward zero whenever it points in undesired directions. We describe the relationship between the proposed systems and their discrete-time counterparts, deriving conditions based on linear matrix inequalities for ensuring exponential rates in both continuous time and discrete time. We provide numerical LMI results to illustrate the effects of our reset mechanisms on convergence rates in a setting that simulates uncertainty of problem parameters. Finally, we numerically demonstrate the efficiency and avoidance of oscillations of the proposed systems when solving both strongly convex and non-strongly convex problems.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.