Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

In-Order Sliding-Window Aggregation in Worst-Case Constant Time (2009.13768v1)

Published 29 Sep 2020 in cs.DB and cs.DS

Abstract: Sliding-window aggregation is a widely-used approach for extracting insights from the most recent portion of a data stream. The aggregations of interest can usually be expressed as binary operators that are associative but not necessarily commutative nor invertible. Non-invertible operators, however, are difficult to support efficiently. In a 2017 conference paper, we introduced DABA, the first algorithm for sliding-window aggregation with worst-case constant time. Before DABA, if a window had size $n$, the best published algorithms would require $O(\log n)$ aggregation steps per window operation---and while for strictly in-order streams, this bound could be improved to $O(1)$ aggregation steps on average, it was not known how to achieve an $O(1)$ bound for the worst-case, which is critical for latency-sensitive applications. This article is an extended version of our 2017 paper. Besides describing DABA in more detail, this article introduces a new variant, DABA Lite, which achieves the same time bounds in less memory. Whereas DABA requires space for storing $2n$ partial aggregates, DABA Lite only requires space for $n+2$ partial aggregates. Our experiments on synthetic and real data support the theoretical findings.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube