Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Learning to Generate Image Source-Agnostic Universal Adversarial Perturbations (2009.13714v4)

Published 29 Sep 2020 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Adversarial perturbations are critical for certifying the robustness of deep learning models. A universal adversarial perturbation (UAP) can simultaneously attack multiple images, and thus offers a more unified threat model, obviating an image-wise attack algorithm. However, the existing UAP generator is underdeveloped when images are drawn from different image sources (e.g., with different image resolutions). Towards an authentic universality across image sources, we take a novel view of UAP generation as a customized instance of few-shot learning, which leverages bilevel optimization and learning-to-optimize (L2O) techniques for UAP generation with improved attack success rate (ASR). We begin by considering the popular model agnostic meta-learning (MAML) framework to meta-learn a UAP generator. However, we see that the MAML framework does not directly offer the universal attack across image sources, requiring us to integrate it with another meta-learning framework of L2O. The resulting scheme for meta-learning a UAP generator (i) has better performance (50% higher ASR) than baselines such as Projected Gradient Descent, (ii) has better performance (37% faster) than the vanilla L2O and MAML frameworks (when applicable), and (iii) is able to simultaneously handle UAP generation for different victim models and image data sources.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.