Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A new network-base high-level data classification methodology (Quipus) by modeling attribute-attribute interactions (2009.13511v1)

Published 28 Sep 2020 in cs.LG and stat.ML

Abstract: High-level classification algorithms focus on the interactions between instances. These produce a new form to evaluate and classify data. In this process, the core is a complex network building methodology. The current methodologies use variations of kNN to produce these graphs. However, these techniques ignore some hidden patterns between attributes and require normalization to be accurate. In this paper, we propose a new methodology for network building based on attribute-attribute interactions that do not require normalization. The current results show us that this approach improves the accuracy of the high-level classification algorithm based on betweenness centrality.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.