Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Extension of Gyarfas-Sumner conjecture to digraphs (2009.13319v1)

Published 28 Sep 2020 in math.CO and cs.DM

Abstract: The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has been a recent center of study. In this work we look at possible extensions of Gy\'arf\'as-Sumner conjecture. More precisely, we propose as a conjecture a simple characterization of finite sets $\mathcal F$ of digraphs such that every oriented graph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induce subdigraph. Among notable results, we prove that oriented triangle-free graphs without a directed path of length $3$ are $2$-colorable. If condition of "triangle-free" is replaced with "$K_4$-free", then we have an upper bound of $414$. We also show that an orientation of complete multipartite graph with no directed triangle is 2-colorable. To prove these results we introduce the notion of \emph{nice sets} that might be of independent interest.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.