Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Extension of Gyarfas-Sumner conjecture to digraphs (2009.13319v1)

Published 28 Sep 2020 in math.CO and cs.DM

Abstract: The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has been a recent center of study. In this work we look at possible extensions of Gy\'arf\'as-Sumner conjecture. More precisely, we propose as a conjecture a simple characterization of finite sets $\mathcal F$ of digraphs such that every oriented graph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induce subdigraph. Among notable results, we prove that oriented triangle-free graphs without a directed path of length $3$ are $2$-colorable. If condition of "triangle-free" is replaced with "$K_4$-free", then we have an upper bound of $414$. We also show that an orientation of complete multipartite graph with no directed triangle is 2-colorable. To prove these results we introduce the notion of \emph{nice sets} that might be of independent interest.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.