Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Robust graph attention network with dynamic adjusted Graph (2009.13038v3)

Published 28 Sep 2020 in cs.LG and stat.ML

Abstract: Graph Attention Networks(GATs) are useful deep learning models to deal with the graph data. However, recent works show that the classical GAT is vulnerable to adversarial attacks. It degrades dramatically with slight perturbations. Therefore, how to enhance the robustness of GAT is a critical problem. Robust GAT(RoGAT) is proposed in this paper to improve the robustness of GAT based on the revision of the attention mechanism. Different from the original GAT, which uses the attention mechanism for different edges but is still sensitive to the perturbation, RoGAT adds an extra dynamic attention score progressively and improves the robustness. Firstly, RoGAT revises the edges weight based on the smoothness assumption which is quite common for ordinary graphs. Secondly, RoGAT further revises the features to suppress features' noise. Then, an extra attention score is generated by the dynamic edge's weight and can be used to reduce the impact of adversarial attacks. Different experiments against targeted and untargeted attacks on citation data on citation data demonstrate that RoGAT outperforms most of the recent defensive methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.