Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mixture of Spectral Generative Adversarial Networks for Imbalanced Hyperspectral Image Classification (2009.13037v1)

Published 28 Sep 2020 in eess.IV

Abstract: We propose a three-player spectral generative adversarial network (GAN) architecture to afford GAN with the ability to manage minority classes under imbalance conditions. A class-dependent mixture generator spectral GAN (MGSGAN) has been developed to force generated samples remain within the domain of the actual distribution of the data. MGSGAN is able to generate minority classes even when the imbalance ratio of majority to minority classes is high. A classifier based on lower features is adopted with a sequential discriminator to form a three-player GAN game. The generator networks perform data augmentation to improve the classifier's performance. The proposed method has been validated through two hyperspectral images datasets and compared with state-of-the-art methods under two class-imbalance settings corresponding to real data distributions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube