Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Two-stream Encoder-Decoder Network for Localizing Image Forgeries (2009.12881v1)

Published 27 Sep 2020 in cs.CV

Abstract: This paper proposes a novel two-stream encoder-decoder network, which utilizes both the high-level and the low-level image features for precisely localizing forged regions in a manipulated image. This is motivated from the fact that the forgery creation process generally introduces both the high-level artefacts (e.g. unnatural contrast) and the low-level artefacts (e.g. noise inconsistency) to the forged images. In the proposed two-stream network, one stream learns the low-level manipulation-related features in the encoder side by extracting noise residuals through a set of high-pass filters in the first layer of the encoder network. In the second stream, the encoder learns the high-level image manipulation features from the input image RGB values. The coarse feature maps of both the encoders are upsampled by their corresponding decoder network to produce dense feature maps. The dense feature maps of the two streams are concatenated and fed to a final convolutional layer with sigmoidal activation to produce pixel-wise prediction. We have carried out experimental analysis on multiple standard forensics datasets to evaluate the performance of the proposed method. The experimental results show the efficacy of the proposed method with respect to the state-of-the-art.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.