Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RENT -- Repeated Elastic Net Technique for Feature Selection (2009.12780v3)

Published 27 Sep 2020 in cs.LG, stat.AP, and stat.ML

Abstract: Feature selection is an essential step in data science pipelines to reduce the complexity associated with large datasets. While much research on this topic focuses on optimizing predictive performance, few studies investigate stability in the context of the feature selection process. In this study, we present the Repeated Elastic Net Technique (RENT) for Feature Selection. RENT uses an ensemble of generalized linear models with elastic net regularization, each trained on distinct subsets of the training data. The feature selection is based on three criteria evaluating the weight distributions of features across all elementary models. This fact leads to the selection of features with high stability that improve the robustness of the final model. Furthermore, unlike established feature selectors, RENT provides valuable information for model interpretation concerning the identification of objects in the data that are difficult to predict during training. In our experiments, we benchmark RENT against six established feature selectors on eight multivariate datasets for binary classification and regression. In the experimental comparison, RENT shows a well-balanced trade-off between predictive performance and stability. Finally, we underline the additional interpretational value of RENT with an exploratory post-hoc analysis of a healthcare dataset.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube