Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties (2009.12710v1)

Published 26 Sep 2020 in cs.LG, physics.comp-ph, and stat.ML

Abstract: As they carry great potential for modeling complex interactions, graph neural network (GNN)-based methods have been widely used to predict quantum mechanical properties of molecules. Most of the existing methods treat molecules as molecular graphs in which atoms are modeled as nodes. They characterize each atom's chemical environment by modeling its pairwise interactions with other atoms in the molecule. Although these methods achieve a great success, limited amount of works explicitly take many-body interactions, i.e., interactions between three and more atoms, into consideration. In this paper, we introduce a novel graph representation of molecules, heterogeneous molecular graph (HMG) in which nodes and edges are of various types, to model many-body interactions. HMGs have the potential to carry complex geometric information. To leverage the rich information stored in HMGs for chemical prediction problems, we build heterogeneous molecular graph neural networks (HMGNN) on the basis of a neural message passing scheme. HMGNN incorporates global molecule representations and an attention mechanism into the prediction process. The predictions of HMGNN are invariant to translation and rotation of atom coordinates, and permutation of atom indices. Our model achieves state-of-the-art performance in 9 out of 12 tasks on the QM9 dataset.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.