Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reliability-Performance Trade-offs in Neuromorphic Computing (2009.12672v1)

Published 26 Sep 2020 in cs.NE, cs.DC, and cs.ET

Abstract: Neuromorphic architectures built with Non-Volatile Memory (NVM) can significantly improve the energy efficiency of machine learning tasks designed with Spiking Neural Networks (SNNs). A major source of voltage drop in a crossbar of these architectures are the parasitic components on the crossbar's bitlines and wordlines, which are deliberately made longer to achieve lower cost-per-bit. We observe that the parasitic voltage drops create a significant asymmetry in programming speed and reliability of NVM cells in a crossbar. Specifically, NVM cells that are on shorter current paths are faster to program but have lower endurance than those on longer current paths, and vice versa. This asymmetry in neuromorphic architectures create reliability-performance trade-offs, which can be exploited efficiently using SNN mapping techniques. In this work, we demonstrate such trade-offs using a previously-proposed SNN mapping technique with 10 workloads from contemporary machine learning tasks for a state-of-the art neuromoorphic hardware.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.