Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Optimal Computing Budget Allocation Tree Policy for Monte Carlo Tree Search (2009.12407v1)

Published 25 Sep 2020 in eess.SY and cs.SY

Abstract: We analyze a tree search problem with an underlying Markov decision process, in which the goal is to identify the best action at the root that achieves the highest cumulative reward. We present a new tree policy that optimally allocates a limited computing budget to maximize a lower bound on the probability of correctly selecting the best action at each node. Compared to widely used Upper Confidence Bound (UCB) tree policies, the new tree policy presents a more balanced approach to manage the exploration and exploitation trade-off when the sampling budget is limited. Furthermore, UCB assumes that the support of reward distribution is known, whereas our algorithm relaxes this assumption. Numerical experiments demonstrate the efficiency of our algorithm in selecting the best action at the root.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.