Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Energy Efficient Resource Allocation Optimization in Fog Radio Access Networks with Outdated Channel Knowledge (2009.12275v1)

Published 25 Sep 2020 in cs.NI

Abstract: Fog Radio Access Networks (F-RAN) are gaining worldwide interests for enabling mobile edge computing for Beyond 5G. However, to realize the future real-time and delay-sensitive applications, F-RAN tailored radio resource allocation and interference management become necessary. This work investigates user association and beamforming issues for providing energy efficient F-RANs. We formulate the energy efficiency maximization problem, where the F-RAN specific constraint to guarantee local edge processing is explicitly considered. To solve this intricate problem, we design an algorithm based on the Augmented Lagrangian (AL) method. Then, to alleviate the computational complexity, a heuristic low-complexity strategy is developed, where the tasks are split in two parts: one solving for user association and Fog Access Points (F-AP) activation in a centralized manner at the cloud, based on global but outdated user Channel State Information (CSI) to account for fronthaul delays, and the second solving for beamforming in a distributed manner at each active F-AP based on perfect but local CSIs. Simulation results show that the proposed heuristic method achieves an appreciable performance level as compared to the AL-based method, while largely outperforming the energy efficiency of the baseline F-RAN scheme and limiting the sum-rate degradation compared to the optimized sum-rate maximization algorithm.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube