Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Persian Keyphrase Generation Using Sequence-to-Sequence Models (2009.12271v1)

Published 25 Sep 2020 in cs.CL

Abstract: Keyphrases are a very short summary of an input text and provide the main subjects discussed in the text. Keyphrase extraction is a useful upstream task and can be used in various natural language processing problems, for example, text summarization and information retrieval, to name a few. However, not all the keyphrases are explicitly mentioned in the body of the text. In real-world examples there are always some topics that are discussed implicitly. Extracting such keyphrases requires a generative approach, which is adopted here. In this paper, we try to tackle the problem of keyphrase generation and extraction from news articles using deep sequence-to-sequence models. These models significantly outperform the conventional methods such as Topic Rank, KPMiner, and KEA in the task of keyphrase extraction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.