Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing MRI Brain Tumor Segmentation with an Additional Classification Network (2009.12111v2)

Published 25 Sep 2020 in eess.IV and cs.CV

Abstract: Brain tumor segmentation plays an essential role in medical image analysis. In recent studies, deep convolution neural networks (DCNNs) are extremely powerful to tackle tumor segmentation tasks. We propose in this paper a novel training method that enhances the segmentation results by adding an additional classification branch to the network. The whole network was trained end-to-end on the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2020 training dataset. On the BraTS's validation set, it achieved an average Dice score of 78.43%, 89.99%, and 84.22% respectively for the enhancing tumor, the whole tumor, and the tumor core.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.