Papers
Topics
Authors
Recent
2000 character limit reached

On the signed chromatic number of some classes of graphs (2009.12059v1)

Published 25 Sep 2020 in cs.DM and math.CO

Abstract: A signed graph $(G, \sigma)$ is a graph $G$ along with a function $\sigma: E(G) \to {+,-}$. A closed walk of a signed graph is positive (resp., negative) if it has an even (resp., odd) number of negative edges, counting repetitions. A homomorphism of a (simple) signed graph to another signed graph is a vertex-mapping that preserves adjacencies and signs of closed walks. The signed chromatic number of a signed graph $(G, \sigma)$ is the minimum number of vertices $|V(H)|$ of a signed graph $(H, \pi)$ to which $(G, \sigma)$ admits a homomorphism.Homomorphisms of signed graphs have been attracting growing attention in the last decades, especially due to their strong connections to the theories of graph coloring and graph minors. These homomorphisms have been particularly studied through the scope of the signed chromatic number. In this work, we provide new results and bounds on the signed chromatic number of several families of signed graphs (planar graphs, triangle-free planar graphs, $K_n$-minor-free graphs, and bounded-degree graphs).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.