Papers
Topics
Authors
Recent
2000 character limit reached

A Meta-learning based Distribution System Load Forecasting Model Selection Framework (2009.12001v2)

Published 25 Sep 2020 in eess.SY, cs.LG, cs.SY, and eess.SP

Abstract: This paper presents a meta-learning based, automatic distribution system load forecasting model selection framework. The framework includes the following processes: feature extraction, candidate model labeling, offline training, and online model recommendation. Using user load forecasting needs as input features, multiple meta-learners are used to rank the available load forecast models based on their forecasting accuracy. Then, a scoring-voting mechanism weights recommendations from each meta-leaner to make the final recommendations. Heterogeneous load forecasting tasks with different temporal and technical requirements at different load aggregation levels are set up to train, validate, and test the performance of the proposed framework. Simulation results demonstrate that the performance of the meta-learning based approach is satisfactory in both seen and unseen forecasting tasks.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.