Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

How Many Factors Influence Minima in SGD? (2009.11858v1)

Published 24 Sep 2020 in cs.LG and stat.ML

Abstract: Stochastic gradient descent (SGD) is often applied to train Deep Neural Networks (DNNs), and research efforts have been devoted to investigate the convergent dynamics of SGD and minima found by SGD. The influencing factors identified in the literature include learning rate, batch size, Hessian, and gradient covariance, and stochastic differential equations are used to model SGD and establish the relationships among these factors for characterizing minima found by SGD. It has been found that the ratio of batch size to learning rate is a main factor in highlighting the underlying SGD dynamics; however, the influence of other important factors such as the Hessian and gradient covariance is not entirely agreed upon. This paper describes the factors and relationships in the recent literature and presents numerical findings on the relationships. In particular, it confirms the four-factor and general relationship results obtained in Wang (2019), while the three-factor and associated relationship results found in Jastrz\c{e}bski et al. (2018) may not hold beyond the considered special case.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.