Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

FluentNet: End-to-End Detection of Speech Disfluency with Deep Learning (2009.11394v1)

Published 23 Sep 2020 in eess.AS, cs.LG, and cs.SD

Abstract: Strong presentation skills are valuable and sought-after in workplace and classroom environments alike. Of the possible improvements to vocal presentations, disfluencies and stutters in particular remain one of the most common and prominent factors of someone's demonstration. Millions of people are affected by stuttering and other speech disfluencies, with the majority of the world having experienced mild stutters while communicating under stressful conditions. While there has been much research in the field of automatic speech recognition and LLMs, there lacks the sufficient body of work when it comes to disfluency detection and recognition. To this end, we propose an end-to-end deep neural network, FluentNet, capable of detecting a number of different disfluency types. FluentNet consists of a Squeeze-and-Excitation Residual convolutional neural network which facilitate the learning of strong spectral frame-level representations, followed by a set of bidirectional long short-term memory layers that aid in learning effective temporal relationships. Lastly, FluentNet uses an attention mechanism to focus on the important parts of speech to obtain a better performance. We perform a number of different experiments, comparisons, and ablation studies to evaluate our model. Our model achieves state-of-the-art results by outperforming other solutions in the field on the publicly available UCLASS dataset. Additionally, we present LibriStutter: a disfluency dataset based on the public LibriSpeech dataset with synthesized stutters. We also evaluate FluentNet on this dataset, showing the strong performance of our model versus a number of benchmark techniques.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube