Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast and stable randomized low-rank matrix approximation (2009.11392v1)

Published 23 Sep 2020 in math.NA and cs.NA

Abstract: Randomized SVD has become an extremely successful approach for efficiently computing a low-rank approximation of matrices. In particular the paper by Halko, Martinsson, and Tropp (SIREV 2011) contains extensive analysis, and has made it a very popular method. The typical complexity for a rank-$r$ approximation of $m\times n$ matrices is $O(mn\log n+(m+n)r2)$ for dense matrices. The classical Nystr{\"o}m method is much faster, but applicable only to positive semidefinite matrices. This work studies a generalization of Nystr{\"o}m method applicable to general matrices, and shows that (i) it has near-optimal approximation quality comparable to competing methods, (ii) the computational cost is the near-optimal $O(mn\log n+r3)$ for dense matrices, with small hidden constants, and (iii) crucially, it can be implemented in a numerically stable fashion despite the presence of an ill-conditioned pseudoinverse. Numerical experiments illustrate that generalized Nystr{\"o}m can significantly outperform state-of-the-art methods, especially when $r\gg 1$, achieving up to a 10-fold speedup. The method is also well suited to updating and downdating the matrix.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)